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 Abstract—Predicting never-seen-before targets in underwater 
side-scan sonar (SSS) recognition is challenging due to limited 
data availability and complex environmental factors. Traditional 
supervised methods achieve high accuracies in standard tasks but 
fail to generalize in zero-shot scenarios. Recent style-based 
transfer learning methods for zero-shot learning (ZSL) in SSS 
have shown promise but suffer from unrealistic environmental 
and sample assumptions. To overcome these limitations, we 
propose Contrastive Adaptation of Domain Augmentation 
(CADA), a novel learning paradigm that utilizes background 
fusion and noise modeling to expand generalized zero-shot 
learning (GZSL), offering greater practicality in engineering. By 
integrating simulated SSS noise with fused backgrounds, our 
approach augments unseen classes, improves class separability, 
and mitigates overfitting. The contrastive adaptation further 
narrows domain distribution gaps while preserving critical intra-
class semantic content information. Moreover, we introduce the 
first SSS image dataset tailored for the GZSL application. 
Experimental results show that CADA reaches up to 73.32% on 
the harmonic mean index, achieving over 20% higher accuracy 
than existing state-of-the-art style-based methods, highlighting its 
effectiveness for SSS target classification in GZSL settings. The 
code is https://github.com/JiaYP0433/CADA-Generalized-Zero-
Shot-Side-Scan-Sonar-Image-Classification. 
 
Index Terms—Sonar Image classification, Generalized Zero-Shot 
Learning, Contrastive Adaptation, Domain Augmentation 

 

I. INTRODUCTION 
EEP convolutional neural networks (DCNN) has been 
widely applied in imaging-based target classification, 
including optic, acoustic, radar images, and so on. 

Traditional high-quality DCNN classification relies heavily on 
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large datasets with with manually annotated labels. They 
become ineffective in practical scenarios when priori data are 
sparse or nonexistent. For instance, it is difficult for side-scan 
sonar (SSS) equipment [1] to acquire samples including 
expected targets due to the high costs of offshore operations 
and related policy restrictions. SSS imaging systems offer 
several advantages, including high resolution, wide coverage, 
depth penetration, and versatility, making them invaluable for 
deep-water exploration. Compared to forward-looking sonar, 
SSS [2] covers a wider swath of the seafloor in a single pass 
alongside the survey path and provides ultra-high imaging of 
seafloor and objects, making it particularly effective for 
mapping and exploration. 

Zero-shot learning (ZSL) [3], [4] addresses the task of 
classifying classes that have never appeared in the training 
samples. In practical application, generalized ZSL (GZSL) [5] 
is more commonly used as it allows for the classification of 
both seen and unseen classes in the training data. At present 
GZSL is used in many engineering fields, such as electric 
power [6], diagnosis [7], flaw inspection [8] and so on. 
However, research on GZSL for SSS image classification is 
limited, even though existing SSS recognition methods [9], 
[10] have satisfactory accuracy. 

Li et al [11] simulated the human way and developed a 
ZSL image classification method for SSS by synthetizing 
pseudo SSS images with added noise. In this experiment, 
remote sensing (RS) image data were taken as seen samples to 
train encoder-decoder models. After that, an SSS image as a 
style sample was encoded together with an optical image and 
then transformed into a pseudo SSS image by a whitening and 
colouring transform (WCT) reconstruction and a decoder with 
added noise. Other style transfer frameworks [12], [13] have 
been developed to generate novel SSS images for SSS 
classification in the setting [11]. Huang et al [14] took 
shipwrecks as novel targets and generated representative 
shipwreck pseudo samples using SSS imaging mechanism and 
environment. These studies have demonstrated that encoder-
decoder networks based on transfer learning are reliable 
mediums to synthetize unseen samples for classification. 

Instead of designing a new framework, we standardize the 
SSS learning benchmark and paradigm tailored for GZSL 
classification. Fig. 1 illustrates what an autonomous 
underwater vehicle (AUV) hanging SSS equipment should do 
for the GZSL task. The motivation is based on three terms 
below. 

D 
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Motivation 1. There are currently no available datasets 
meeting with unified evaluation protocols and data splits, as 
suggested by the reference [5]. The split between seen and 
unseen classes should align with natural and cognitive 
principles. It means that targets of seen classes (such as seabed 
and shipwreck) are relatively common in underwater 
environment, whereas extremely rare targets are represented 
as unseen classes. Besides, it is crucial to ensure that unseen 
classes do not appear in the dataset used to pre-train the 
backbone network for complying with cognitive changes. This 
argument is supported by real-world SSS data statistics 
presented in Table I [15]. 
Motivation 2. The size of the training data is not uniformly 
and reasonably set. According to the GZSL criterion, the 
available information about unseen classes is limited to one or 
a few semantic features. This criterion aligns with the 
common understanding that the target patterns which humans 
recall from memory are generally rough. 
Motivation 3. Although style-based transfer learning is 
currently the most effective way, the setting is not strictly 
regulated. Based on accessibility principles, style samples 
should not include unseen classes. Moreover, the effectiveness 
of style transfer is the key to ensuring the quality of GZSL. 

Based on above motivations, we propose contrastive 
adaptation with domain augmentation (CADA) – a carefully 
designed paradigm that uses style transfer as a guiding 
principle to generate diverse pseudo-unseen samples. The 
CADA learning paradigm is illustrated in Fig. 2. Compared 
with directly used style transfer models [16], [17], [18], [19], 
CADA augments unseen pseudo SSS samples with 

a wide variety of bottom topographies using semantic content 
and background fusion, preventing classifiers from overfitting 
towards seen classes. Moreover, CADA narrows down the 
intra-class Kullback-Leibler (KL) divergence for contrastive 
adaptation between the content image domain and SSS image 
domain.  

After verification across SSS image datasets, our paradigm 
can significantly improve classification performance using 
existing style transfer models for sample generation in the 
GZSL scenario. To summarize, our contributions are four-
fold: 

1) We propose a novel CADA learning paradigm for SSS 
image classification. To the best of our knowledge, this 
is the first time GZSL has been applied to underwater 
SSS category classification; 

2) We introduce background fusion with added SSS 
image noise to constitute unseen class augmentation 
using a pre-existing style transfer framework without 
re-training, ensuring sample diversity and fidelity while 
avoiding overfitting towards seen classes; 

3) We present a weighted loss function that incorporates 
logit adjustment and KL divergence for contrastive 
domain adaptation, enhancing the classification 
robustness and preventing model collapse; 

4) We provide an available SSS dataset for GZSL 
research. The advancement and effectiveness of the 
proposed paradigm are verified, serving as an 
evaluation benchmark for the application of style 
transfer networks in the SSS image classification.  

II. RELATED WORKS 
Our work is closely related to the following research 

interests.  

A. SSS Image Classification 
SSS systems, mounted on a towfish or AUV, are among the 

most prominent sensors for underwater searches, such as 
unexploded ordnances, wreckages or landforms. These 
systems emit an acoustic ping and receive the backscattered 
signal while working. The recorded time-signals are 
processed, meanwhile, an image is formed by stacking 
consecutive pings on top of each other. With the breakthrough 
of deep learning technology, methods based on DCNN have 
gradually replaced traditional automatic target recognition 
methods [20], [21], [22]. 

Berthold et al [23] presented an early study on automatic 
sediment type classification using DCNNs, achieving 83% 
accuracy. Luo et al [24] combined LeNet-5 with AlexNet to 
handle small sample classification. Although these methods 
achieved high accuracy, often exceeding 90%, they are 
notoriously data-hungry. Compared to optic or RS imaging, 
SSS imaging is time consuming and technically cumbersome, 
making it nearly impossible to obtain a large amount of 
manually annotated data in advance. 

 
Fig. 1. Discovery: What should do the AUV hanging SSS equipment when 
meeting up with targets of unseen classes? Existing SSS recognition methods 
can easily allow the AUV host computer to identify seen targets (seabed or 
shipwrecks) which are common in or on water by naïve supervise learning. 
However, it will become difficulties when AUV encounters novel unseen 
targets (aircraft wreckages or human body) which are not common in the 
water. The purpose of GZSL is to allow AUV to recall the appearance of 
novel targets, and associate the general contents of the novel targets on the 
SSS image according to the scanned image texture. 

TABLE I 
REAL-WORLD SSS DATA STATISTICS FROM [15] 

 Seen classes Unseen classes 

Examples 

    
Class Name Seafloor Shipwreck Plane- 

Wreckage 
Person 

Number >500 >400 <100 <20 

 

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2025.3551028

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on March 14,2025 at 13:07:03 UTC from IEEE Xplore.  Restrictions apply. 



3 
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

To address this problem, few-shot [25], [26] or zero-shot 
[11], [27] approaches are developed using transfer learning. 
Qin et al [28] extended these previous works by pre-training 
on grayscale CIFAR-10 images and augmenting data using 
generative adversarial networks (GANs). Transfer-learning-
based recognition [1], fine-tuning backbone networks [29] and 
enlarging dataset by a GAN [10], [30] are among the most 
effective techniques for classification of a bounded number of 
SSS samples.  

Zhao et al [31] simulated the imaging mechanism and 
image characteristics of SSS in marine environment to 
generate shipwreck samples by a target-to-target and 
background-to-background style transfer model. The prompt 
fine-tuning [32] based on vision-language models has been 
used for the zero-sample problem of SSS in the open-set 
recognition. Jiao et al [33] proposed a framework for open-set 
recognition tasks with long-tail SSS distribution.  

In this study, we attempt to build a novel paradigm directed 
against SSS image classification in the GZSL scenario using 
style transfer. 

B. GZSL 
The goal of ZSL is how to make a machine imitate humans 

to recognize unseen classes aided by auxiliary information. 
Early works focused on predicting outputs from intermediate 
layer between feature and label spaces, usually using attributes 
[4] or word vectors [34] as auxiliary semantic information. 
GZSL [5] extends ZSL by recognizing both seen and unseen 
classes. 

In terms of algorithms, GZSL can be broadly categorized 
into two major approaches: mapping-based [35] and data-
based generative [36] methods. Mapping-based methods aim 
to map semantic representations and predicted visual 
representations into a shared space where the distribution of 
the two types of representations are similar, and intra-class 
distribution divergence is minimized. Improvements in 
mapping-based techniques, such as out-of-distribution 
detection [37], meta-learning [38], long-tail rebalancing [39], 
and attribution-transformer-based augmentation [40] have 
enhanced robustness against limited data and impure semantic 
information.  

Data-based generative methods, on the other hand, offer 

better generalization and handle projection bias more 
effectively than mapping-based methods. Techniques 
involving pseudo features generated by GANs with variational 
autoencoders [41], semantic irrelevant disentanglement [42] 
and contrastive embedding [43] almost occupies a dominant 
position. To mitigate the impact of low-quality feature or 
semantic features, contrastive representation optimization [44] 
and prototype-guided sub-representation generation [45] are 
leading in GZSL research, both theoretically and practically. 

In our approach, we use an existing style transfer network as 
a data-based generation model, incorporating a proposed loss 
function with logit adjustment to achieve minimal mapping 
between source and target spaces. As for semantic information 
of unseen SSS classes, we use a few RS or shadow 
photography views with content relatively close to SSS 
images, as they capture targets from an overhead perspective. 
Although the prior information of unseen classes primarily 
contains the target outlines, many of the leading GZSL 
methods effectively utilize heterogeneous transfer learning 
[46] to solve recognition tasks in the target domain using 
information from another domain. 

C. Style Transfer 
Johnson et al [47] first pioneered real-time transfer style 

from random images. WCT (Whitening and Coloring 
Transform) [48] whitened and then re-colored auto-encoded 
feature maps by singular value decomposition. PhotoWCT 
[49] improves on WCT by replacing the up-sampling layers 
with un-pooling layers that preserve spatial information, 
addressing distortions of object boundaries caused by WCT. 
Afterwards LiWCT [11] modified PhotoWCT by filling the 
zeros of traditional un-pooling layers with random noise 
values to reduce the checkerboard effect and generate various 
styles closer to real SSS images. Stytr2 [18] based on 
attention-based transformers handles long-term dependencies 
and retain target details. CCPL [19] simplified the feature 
transformation module based on [16] and [17], devising 
contrast coherence preservation based on the assumption of 
similarity between adjacent areas of the image. 

The textures of SSS images are very different from those of 
other style images shown in Fig. 3. Therefore, our tailor-made 
GZSL paradigm for SSS classification falls within the scope 

 
Fig. 2 (a) paradigm directly feeding DCNN semantic contents and seen samples; (b) paradigm using style transfer models; (c) our proposed paradigm. Although 
the effectiveness of the paradigm (b) in the ZSL setting has been verified, it leads to overfitting when both seen and unseen classes need to be classified. The 
proposed paradigm achieves a satisfactory result in the GZSL scenario. 
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of heterogeneous transfer [50]. In this paper, we investigate 
the GZSL performance of the proposed paradigm based on 
existing style transfer models: PhotoWCT, LiWCT, StyTr, and 
CCPL. We provide reasonable explanations for the 
classification effects using these models, along with guidance 
on which transfer model is most suitable for SSS 
classification. The proposed paradigm, using background 
fusion and noise addition, takes the advantage of distilling 
target-invariant content akin to mapping-based methods and 
generates various pseudo samples for contrastive 
augmentation of unseen classes like data-based generative 
methods. 

III. PRELIMINARIES 

A. Mathematical Formulation 
We will provide fundamental notations for GZSL in SSS 

classification. Given K seen classes and L unseen classes, the 
sets of seen classes s and unseen classes t are disjoint, i.e. 
s∩t=∅. We denote s={1, ⋯, K} and t={K+1, ⋯, K+T}.  

The available training information includes seen prior data 
s={1, ⋯, K}  and target prior data 𝓓𝓓t={K+1, ⋯, K+T} , 

where k=��𝐼𝐼s,𝑖𝑖, k��𝐼𝐼s,𝑖𝑖∈, k∈s�
𝑖𝑖=1

Nk  and 

t=��𝐼𝐼c,𝑖𝑖, t��𝐼𝐼c,𝑖𝑖∈, t∈t�
𝑖𝑖=1

Nt . Here, 𝐼𝐼s,𝑖𝑖  is an SSS image 
sample from seen classes, 𝐼𝐼c,𝑖𝑖  is a semantic content image 
different from SSS domain,  represents the SSS image space 

and  represents the other content domain space instead of the 
SSS domain. We assume Nt≪Nk, t∈t 𝑎𝑎𝑎𝑎𝑎𝑎 k∈s  is to 
comply with the GZSL criterion. Very few source samples 𝐼𝐼c,𝑖𝑖

∈  correspond to semantic information of unseen classes. 
Attributes, as in [4], are generated by an infinite relational 
model [51] that explores similar relations between kinds of 
entities in each set.  

Our method eliminates the need for hand-collected attribute 
descriptions and supervised clustering. Our goal is to learn 
general visual classifiers across all classes 𝑓𝑓gzsl: ⟶s ∪ t.  

B. SSS Image Characteristic 
Each side of an SSS system has a transducer array at work. 

It emits a short sound pulse that scatters upon hitting the 
seabed or objects in the water. Some of the scattered sound 
returns to the transducer along the original propagation route 
and is converted into an electrical pulse signal or ping.  

The signal intensity diagram of one side of the transducer 
array is shown in Fig. 4 (a). Region ① is located near the 
transducer signal receiving and transmitting region, presenting 
a strong received signal. The water column between regions 
① and ② barely receives any signal. Region ② is directly 
below the transducer and also exhibits a strong signal. 
Additionally, regions with smooth surfaces, raised surfaces 
close to the transducer, and areas perpendicular to the 
direction of signal propagation, such as ④, ⑤, ⑥ and ⑩, also 
show strong signals. Conversely, the regions between ⑥ and 
⑦, and between ⑧ and ⑨ are obstructed and present minimal 
signals. A ping signal is numerically converted by a carried 
processor according to its strength, producing a line of images. 
As the carrier moves forward, this process of the transducer 
transmitting and receiving sound signals is repeated, forming a 
converted ping signal. These signal pings are then spliced 
together to obtain a complete SSS image, as illustrated in Fig. 
4 (b). 

According to grayscale distributions of images, the region with 
strong signal is referred to the SSS image highlighted area, the 
region with minimal signal is called the SSS image shadow area, 
and the remaining area is the SSS image background area. The 
highlighted area usually includes objects suspended or shallowly 
buried on the seabed, or be raised seabed hills. The shadow area 
indicates the occluded part containing only scattering noise, 
while the background represents broad seabed. In this paper, we 
disregard the influence of slant range and navigation speed on 
the image grayscale, assuming that all given images are 
preprocessed by relevant algorithms [52], [53], [54]. This 
assumption ensures that the background grayscale distribution 
is approximately uniform in pixel space and that the peak 
value of the grayscale histogram in the image background is 
approximately equal to the median value of the image. 

 
Fig. 3. Comparative analysis on images on the left and corresponding Fourier 
transform images on the right. (a) an RS airplane image; (b) an SSS airplane 
image; (c)-(d) SSS seafloor images; (e)-(h) an image generated by 
PhotoWCT, LiWCT, StyTr and CCPL transfer models using (c) as the style 
image, respectively; The SSS image texture has heterogeneous components 
compared to RS image texture because the central rays of SSS Fourier 
images are weaker but the high-frequency components in the non-central 
area are larger than RS. And the spatial distribution of SSS peripheral high-
frequency components is more uniform than that of RS. 
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C. Image Style transfer 
The goal of image style transfer is to render a content image 

using a reference style image. Style transfer models typically 
consist of an encoder that processes the content image, a 
decoder that generates the transferred image, and a transform 
module that handles the deep features of both the content and 
style images. We review four typical style transfer models, 
PhotoWCT, LiWCT, StyTr, and CCPL. 

In PhotoWCT, the transformation module first whitens a 
content feature 𝑓𝑓o by: 

𝑓𝑓o=EoDo
−1

2Eo
T𝑓𝑓o, (1) 

 
where Do is a diagonal matrix with the eigenvalues of 𝑓𝑓o𝑓𝑓o

T on 
its principal diagonal. The transferred feature 𝑓𝑓os , which 
retains both whitened content and style information, is then 
computed by 

𝑓𝑓os=EsDs
−1

2Es
T𝑓𝑓o + ms, (2) 

 
where Ds  is a diagonal matrix with the eigenvalues of  𝑓𝑓s𝑓𝑓s

T 
(style feature 𝑓𝑓s) on its diagonal, and 𝑚𝑚𝑠𝑠 is the mean vector of 
𝑓𝑓s. Unlike WCT, PhotoWCT incorporates un-pooling layers to 
preserve spatial information in each encoder-decoder block. 
During training, PhotoWCT uses pixel reconstruction loss and 
feature reconstruction loss [47]. 

Building on PhotoWCT, LiWCT introduces random noise 
into the un-pooling layers to mitigate the checkerboard effect, 
generating pseudo-images with textures that more closely 
resemble real SSS images. 

StyTr adopts transformer-based frameworks for encoding 
content and style images. Positional encoding 𝒫𝒫𝒞𝒞𝒞𝒞 is learnable 
to acquire structural information. In the transform module, the 
content sequence 𝑍𝑍c = ℰc + 𝒫𝒫𝒞𝒞𝒞𝒞  is first encoded into queries 
𝑍𝑍c𝑊𝑊q, keys 𝑍𝑍c𝑊𝑊k, and values 𝑍𝑍c𝑊𝑊v by a transformer encoder, 
where 𝑊𝑊q , 𝑊𝑊k  and 𝑊𝑊v  are encoder weights. Multi-head 
attention is further calculated to get the encoded content 
sequence 𝑌𝑌𝑐𝑐. The style sequence 𝑌𝑌s is used to generate queries 
(𝑌𝑌c + 𝒫𝒫𝒞𝒞𝒞𝒞)𝑊𝑊′q , keys 𝑌𝑌s𝑊𝑊′k , and values 𝑌𝑌s𝑊𝑊′v  by a 
transformer decoder, where 𝑊𝑊′q , 𝑊𝑊′k  and 𝑊𝑊′v  are decoder 
weights. The output sequence is further refined by multi-head 
attention in the transformer decoder. Compared with 
PhotoWCT and LiWCT, StyTr significantly improves the 
fusion effect of style image textures, especially in the 

background area, as shown in Fig. 3. Its transformer-based 
architecture and style perceptual loss enhance the preservation 
of content details. 

CCPL features a transformation module comprising a 
content network 𝑐𝑐𝑎𝑎𝑐𝑐𝑐𝑐(∙) , a style network 𝑠𝑠𝑎𝑎𝑐𝑐𝑐𝑐(∙)  and a 
convolution 𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐(∙). Initially, a content feature 𝑓𝑓o and a style 
feature 𝑓𝑓s are centered along the spatial dimension, and further 
standardized to obtain 𝑓𝑓o  and 𝑓𝑓s , respectively. Then 
𝑐𝑐𝑎𝑎𝑐𝑐𝑐𝑐�𝑓𝑓o� → 𝑓𝑓o  and 𝑠𝑠𝑎𝑎𝑐𝑐𝑐𝑐�𝑓𝑓s� → 𝑓𝑓s  are flattened along the 
spatial dimensions. The transferred feature 𝑓𝑓os is computed by 

𝑓𝑓os=𝑓𝑓s⊗𝑓𝑓s
T⊗𝑓𝑓o, (3) 

 
where ⊗ denotes matrix multiplication along the channel 
dimension. The transformed feature 𝑓𝑓os  is further refined by 
𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐�𝑓𝑓os� + ms , where 𝑚𝑚𝑠𝑠  is the spatial mean of 𝑓𝑓s . CCPL 
also includes the style perceptual loss.  

CCPL has two key characteristics. 1. It preserves content 
coherence within the neighborhood of pixels because the 
distance between the vector of any pixel and the one of its 
neighboring pixels is smaller than the distance between 
vectors at the other pixels in the pixel domain. 2. According to 
Eq. (3), the synthesized images contain more texture details 
about the target domain in the regions of interest with higher 
values of 𝑓𝑓o. 

IV. METHODOLOGY 
In this section, we elaborate on our proposed SSS 

classification paradigm for GZSL classification, as illustrated 
in Fig. 2(c). The paradigm comprises three main components: 
background fusion, SSS noise modeling and contrastive logit 
adjustment loss. We give the stepwise pseudocode description 
of our CADA paradigm. Background fusion is applied 
exclusively to 𝐼𝐼𝑐𝑐 ∈  for unseen classes, while every SSS style 
sample 𝐼𝐼𝑠𝑠 ∈  is sourced from seen training samples. 

A. Background Fusion 
To diversify the generated samples, we use a background 

fusion unit. We assume that the grayscale distribution of 
generated images is relatively uniform compared to that of 
SSS style images. Especially after training with style perceptual 
loss in StyTr and CCPL, there has the relation (about spatial 
means  μ(∙) and standard deviations  σ(∙)): 
 μ�𝐼𝐼g�≈𝜇𝜇(𝐼𝐼s), 𝜎𝜎�𝐼𝐼g�≈𝜎𝜎(𝐼𝐼s), (4) 

 
Fig. 4. (a) The returned signal intensity diagram of one side of SSS array. (b) Example of SSS image. 
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where 𝐼𝐼g  and 𝐼𝐼s  represent the generated image and the style 
image features, respectively. The grayscale histogram 
distribution of real SSS images is inevitably biased due to 
sharp noise and rugged texture. For simplicity, we utilize the 
grayscale median as an estimator based on the peak 
characteristics of the gray distribution. 

We compute a background mask by 
𝐼𝐼mask= exp�−�𝐼𝐼g −𝑚𝑚𝑐𝑐𝑎𝑎g� ∗ λ� , (5) 

 
where 𝑚𝑚𝑐𝑐𝑎𝑎g is the gray median of 𝐼𝐼g and λ is a mask factor. A 
smaller gray value of �𝐼𝐼g −𝑚𝑚𝑐𝑐𝑎𝑎g� indicates a greater similarity 
to the background area. Given a reference image 𝐼𝐼r randomly 
extracted from seen classes that contains no objects, we obtain 
a fusion output 𝐼𝐼o as: 

𝐼𝐼o=𝐼𝐼g∙(1 − 𝐼𝐼mask)+𝐼𝐼rγ∙𝐼𝐼mask, (6) 
 
where γ is a coefficient randomly selected from the interval 
[0.9, 1.1] . The gamma correction of 𝐼𝐼r  facilitates the 
diversification of the generated background distribution. To 
ensure that the gray values in 𝐼𝐼o are within the range [0, 1], 
both 𝐼𝐼g and 𝐼𝐼𝑟𝑟 are normalized so that their grayscale values are 
confined within [0, 1]. 

B. Noise Modelling 
During sound wave transmission, interactions with the water 

body and seabed result in multipath reflections, refraction, and 
reverberation [55], leading to noise in SSS imaging. To 
simulate these effects, we construct a noise modeling item that 
incorporates multiplicative noise, which correlates highly with 
signal strength, to emulate echo interference. The multiplicative 
noise approximately follows the Rayleigh distribution [56]. In 
addition, we introduce additive noise, which is independent of 
signal strength and follows a Gaussian distribution [57] to 
model imaging disturbances caused by the transducer. 

Based on the noise modeling, the fusion output 𝐼𝐼o for unseen 
classes (the original SSS image 𝐼𝐼s  for seen classes) is 
transformed into 𝐼𝐼on by  

𝐼𝐼on= �
‖(𝑁𝑁mul+1)∙𝐼𝐼s+𝑁𝑁add‖, for seen class samples
‖(𝑁𝑁mul+1)∙𝐼𝐼o+𝑁𝑁add‖, for unseen class samples , (7) 

 
where 𝑁𝑁mul and 𝑁𝑁add are the images of multiplicative noise and 
additive noise, respectively, both of which are with the same size 
as  𝐼𝐼o. And ‖∙‖ normalizes the values to the range [0, 1]. 

C. Logit Adjustment 
In GZSL classification, the sample distribution across classes is 

imbalanced due to the incomplete and limited prior 
information of unseen classes. Existing classifiers typically 
optimize global accuracy by modeling the posterior 
probability 𝑞𝑞(𝑦𝑦𝑥𝑥|𝐼𝐼𝑥𝑥): 

Ag=𝔼𝔼𝐼𝐼𝑥𝑥∼𝑝𝑝(𝐼𝐼𝑥𝑥)𝑞𝑞(𝑦𝑦𝑥𝑥|𝐼𝐼𝑥𝑥), (8) 
 
where 𝑝𝑝(𝐼𝐼𝑥𝑥)  is a uniform distribution over all data, and 𝑦𝑦𝑥𝑥 
denotes the class label for the image 𝐼𝐼𝑥𝑥 . However, Eq. (8) 
neglects the sample distribution imbalance between seen and 

unseen domains. To address this, we introduce an adjusted 
accuracy Aadj: 

Aadj=𝔼𝔼𝐼𝐼𝑥𝑥∼𝑝𝑝(𝐼𝐼𝑥𝑥)
𝑞𝑞(𝑦𝑦𝑥𝑥|𝐼𝐼𝑥𝑥)
𝑝𝑝(|𝑦𝑦𝑥𝑥) , (9) 

 
where 𝑝𝑝(𝒴𝒴|𝑦𝑦𝒙𝒙) represents the seen-unseen prior probability. We 
define a network 𝑓𝑓(∙) composed of a DCNN and a classifier in 
series, which of the output is a logit vector. Based on deduction 
theory [39], we build the adjustment for the logit as follow: 

𝑞𝑞(𝑦𝑦𝑥𝑥|𝐼𝐼𝑥𝑥)
𝑝𝑝() ∝ exp𝑓𝑓(𝐼𝐼𝑥𝑥)𝑦𝑦𝑥𝑥 , (10) 

 
where 𝑓𝑓(𝐼𝐼𝑥𝑥)𝑦𝑦𝒙𝒙 represents the logit value of the image 𝐼𝐼𝑥𝑥 assigned 
to class 𝑦𝑦𝑥𝑥. After applying SoftMax normalization, we compute 
adjusted 𝑞𝑞(𝑦𝑦𝑥𝑥|𝐼𝐼𝑥𝑥) by: 

𝑞𝑞(𝑦𝑦𝒙𝒙|𝐼𝐼𝑥𝑥)= Softmax �𝑓𝑓(𝐼𝐼𝑥𝑥)+log�𝑝𝑝(|𝑦𝑦𝑥𝑥)��
𝑦𝑦𝑥𝑥

. (11) 

We deploy the prior probability 𝑝𝑝(|𝑦𝑦𝒙𝒙)  based on the 
frequency of seen and unseen domains as: 

𝑝𝑝(|𝑦𝑦𝒙𝒙)= �
α (1+α)⁄ , 𝑦𝑦𝒙𝒙 ∈ s  
1 (1+α)⁄ , 𝑦𝑦𝒙𝒙 ∈ t , (12) 

 
where α is a ratio and the setting will be analyzed in detail in 
the experimental section. 

D. Specific Training Process 
During training, we adopt a contrastive loss function that 

incorporates the KL divergence between training samples 
(𝐼𝐼𝑥𝑥, 𝑦𝑦𝒙𝒙) and their processed counterparts 𝐼𝐼on. Specifically, the 
training samples (𝐼𝐼𝑥𝑥, 𝑦𝑦𝒙𝒙)  come from either the seen classes 
(i.e. (𝐼𝐼𝑥𝑥, 𝑦𝑦𝒙𝒙) ∈ k  for k ∈ s ) or the unseen classes (i.e. 
(𝐼𝐼𝑥𝑥 ,𝑦𝑦𝒙𝒙) ∈ t for t ∈ t). The contrastive loss ℒce is: 

ℒce=− �𝔼𝔼�log�𝑞𝑞(𝑦𝑦𝑥𝑥|𝐼𝐼𝑥𝑥)��+𝔼𝔼�log�𝑞𝑞(𝑦𝑦𝑥𝑥|𝐼𝐼on)���. (13) 
 
Let the classifier be represented by a function 𝑓𝑓(∙). To reduce 
the distribution distance between samples 𝐼𝐼𝑥𝑥  and 𝐼𝐼𝑜𝑜𝑜𝑜  in the 
class feature space, the predicted probability distribution 
vectors 𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑥𝑥  and 𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑜𝑜𝑜𝑜 are computed. The probability for 
the class index 𝑦𝑦 is represented as: 

 
Algorithm 1 Pseudocode of the CADA Algorithmic Core Parts 
1. For the processing of each sample in the dataset before training: 

a. if the sample’s label is in the unseen classes: 
    i. Transfer the style of the sample image by a style transfer network. 

ii.  Clip a reference image to range [0, 1] and apply random scaling. 
    iii. Calculate a background mask by Eq (5). 
    iv. Fuse the sample with the reference image and the mask by Eq (6). 
b. Add Rayleigh and Gaussian noise to the sample image by Eq. (7). 
c. Normalize the image to ensure all the values are between 0 and 1. 
 

2. For each training step: 
a. Feed the original sample and the processed sample into the classifier. 
b. Calculate the cross-entropy loss by Eq. (13). 
c. Compute the KL divergence loss by Eq. (17). 
d. Calculate the total loss by Eq. (18). 
e. Perform backpropagation to update the model's parameters. 
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𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑥𝑥(𝑦𝑦)=Softmax �𝑓𝑓(𝐼𝐼𝑥𝑥)+log�𝑝𝑝(|𝑦𝑦)�� , (14) 

𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑜𝑜𝑜𝑜(𝑦𝑦)=Softmax �𝑓𝑓(𝐼𝐼𝑜𝑜𝑜𝑜)+log�𝑝𝑝(|𝑦𝑦)�� , (15) 
 
The KL divergence between 𝐼𝐼𝑥𝑥 and 𝐼𝐼𝑜𝑜𝑜𝑜 is then expressed as: 

KL(𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑥𝑥||𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑜𝑜𝑜𝑜)=�𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑥𝑥(𝑖𝑖)log�
𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑥𝑥(𝑖𝑖)
𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑜𝑜𝑜𝑜(𝑖𝑖)

�
𝑖𝑖

, (16) 

 
The KL divergence term in the contrastive loss function is 
given by: 
ℒkld=𝔼𝔼[KL(𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑥𝑥||𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑜𝑜𝑜𝑜)]+𝔼𝔼[KL(𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑜𝑜𝑜𝑜||𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑥𝑥)], (17) 

 
The total loss for the proposed CADA learning paradigm is: 

ℒtotal = ℒce + ℒkld ∗
(1 − epoch)

epochmax
, (18) 

 
where epoch is a training epoch number and epochmax is the 
maximum epoch. The core parts of the CADA pseudocode are 
provided in Algorithm 1. 

The KL divergence weight decreases linearly with 
increasing epochs. This approach aims to minimize the 
distribution discrepancy between SSS images and other 
content domain images during the early training phase, while 
later focusing on learning knowledge from real samples. 

V. EXPERIMENTS AND ANALYSIS 

A. Datasets 
There are no publicly available SSS image datasets 

specifically for GZSL scenario, though KLSG [2], SCTD [22] 
and LZSSS [11] each catering to different applications. 
Notably, LZSSS only contains two categories: airplane and 
ship (shipwreck) for ZSL. KLSG contains three categories 
airplane, ship and person (frogmen) for target detection. 
SCTD contains seabed (seafloor), airplane and ship for 
transfer classification.  

To define our dataset for the GZSL scenario, we first 
determine the setting criteria for seen classes in the light of the 
motivation 1-2. First, the chosen classes, seabed and ship, are 
prevalent underwater objects, with the seabed being especially 

common. Second, similar items to ships, such as aircraft 
carriers (n02687172), catamarans (n02981792), and container 
ships (n03095699), are present in ImageNet, a widely used 
dataset for pre-training [5]. Other types of targets are 
considered as unseen classes. 

We provide a data benchmark GZSSS, which includes two 
seen classes — seabed and ship, and two unseen classes —
airplane and person for GZSL. The seabed images are sourced 
entirely from SCTD, while other samples were curated from 
the datasets, removing duplicates and reintegrating them to 
create a comprehensive set.  

The statistics of GZSSS are summarized in Table II. For the 
seen classes, the dataset is split into 60% for training and 40% 
for testing. All samples of the unseen classes are used 
exclusively for testing. Knowledge for the unseen classes is 
trained using only a limited number of content images, as 
illustrated in Fig. 5, rather than SSS images. Specifically, four 
airplane content images come from optical RS imaging, while 
the remaining one is from photographic imaging. Both person 
content images are sourced from photographic imaging in 
[27]. These content images cover a broad range of 
morphological and semantic information. 

B. Implementation Details 
Our experiments utilized ResNet50 after pre-trained on 

ImageNet as the backbone, followed by a linear layer added as 
the classifier with an output dimension of 4 (corresponding to 
the total number of classes). We employed the pre-trained 
CCPL as the style transfer framework without additional 
retraining. 

During the training phase, we used a Reduce-LR-On-

TABLE III 
COMPARISON ACCURACY (%) WITH THESE BASELINES AND THEM ADDED WITH 

THE PROPOSED PARADIGM (+CADA). THE BEST RESULT IS IN BOLD 
 𝐴𝐴𝑠𝑠 𝐴𝐴𝐴𝐴 𝐻𝐻 

SoftMax 69.62±0.12 38.33±0.20 49.44±0.19 
PhotoWCT 56.63±2.93 38.86±3.61 45.92±2.65 

LiWCT 54.61±5.41 39.36±2.51 45.48±1.43 
FastNoise 50.56±6.17 42.61±3.34 46.25±3.12 

StyTr 75.26±2.74 35.97±2.33 48.61±2.11 
GCEA 79.36±2.28 39.31±2.42 52.58±2.09 
CCPL 76.70±0.76 36.13±1.16 49.11±1.10 

SoftMax+CADA 77.91±2.02 44.94±1.94 56.97±1.71 
PhotoWCT+CADA 74.73±1.97 49.56±1.51 59.57±1.33 

LiWCT+CADA 69.60±2.31 53.23±3.01 60.26±2.01 
FastNoise+CADA 73.39±4.43 51.99±4.64 60.86±4.08 

StyTr+CADA 82.02±3.48 62.78±2.52 71.05±1.84 
GCEA+CADA 86.76±1.73 54.48±2.66 66.93±2.53 
CCPL+CADA 89.18±0.57 62.28±1.81 73.32±1.26 

 

 
Fig. 5. Semantic content image instances for the two unseen classes, airplane and person. These indices are given. 

TABLE II 
GZSSS DATA STATISTICS. TR: TRAINING, TS: TESTING, AND C: CONTENT. 

Domain Seen Unseen 
Class name Seabed Ship Airplane Person 
Tr number 345 292 0 0 
Ts number 233 195 60 14 
C number 0 0 5 2 
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Plateau optimizer with a patience parameter of 2. The learning 
rates were set to 10-3 for the backbone and 2×10-3 for the 
classifier. The batch size was 64. For balanced domain 
sampling, we randomly selected one content image for each of 
the two unseen classes and 31 training samples for each of the 
two seen classes. The maximum number of epochs was set to 
50. All input images were converted to grayscale, ensuring 
that the three-color channels were identical, and normalized 
with a mean of (0.3628, 0.3628, 0.3643) and a standard deviation 
of (0.1500, 0.1500, 0.1505). Data augmentation was performed 
to expand the training and testing samples to four times their 
original size by applying horizontal and vertical flips, as well 
as both simultaneously.  

The logit adjustment ratio α in Eq. (12) was set as 150, 350, 
200 and 100 for the style generative models PhotoWCT, 
LiWCT, StyTr, and CCPL, respectively. The Rayleigh 
distribution scale for multiplicative noise and the Gaussian 
distribution scale for additive noise were set to default values 
of 0.01 and 0.1, respectively. Detailed discussions on these 
hyperparameters are provided in the Parameter Analysis 
section. 

The accuracies of average seen classes 𝐴𝐴𝑠𝑠 and average unseen 
classes 𝐴𝐴𝐴𝐴  are calculated based on the universal evaluation 
protocols [5]. The simultaneous classification accuracy of both 
seen and unseen classes is evaluated by a harmonic mean as: 

 H = 2 ∗ 𝐴𝐴𝑠𝑠 ∗ 𝐴𝐴𝐴𝐴 (𝐴𝐴𝑠𝑠+𝐴𝐴𝐴𝐴)⁄ . (19) 
 

This harmonic mean H is the most crucial criterion to assess 
the GZSL performance. We repeated the experiments 10 times 
with different random seeds for Sections V.C-D and H, and 
conducted additional experiments for each variant in Sections 
V.E-G for further analysis. 

C. Performance Results 
To showcase the effectiveness of our proposed method, we 

compared it against several baselines, including SoftMax, 
which directly uses DCNN outputs with samples, as shown in 
Fig. 2(a); Softmax+CADA, which incorporates our proposed 
paradigm without style generative models as illustrated in Fig. 
2(c); and style transfer models used directly for training, 
depicted in Fig. 2(b). The proposed CADA was integrated with 
style generative models. We recorded the arithmetic mean ± 
population standard deviation of 𝐴𝐴𝑠𝑠, 𝐴𝐴𝐴𝐴 and 𝐻𝐻 from 10 runs 
using different random seeds and the results are presented in 
Table III. 

The results reveal that our proposed learning paradigm 
significantly outperforms the methods that do not use the 

proposed paradigm and only uses the generative model in 
terms of 𝐴𝐴𝐴𝐴 . Specifically, the CADA generative model 
combined with the proposed paradigm outperforms the CCPL 
baseline by 24.21% in terms of H , achieving the best 
performance in 𝐴𝐴𝑠𝑠  and H . It demonstrates that its superior 
effectiveness in SSS image classification with style-transfer-
based strategies compared to direct training approaches.  

CCPL mitigates the limitations of directly applying style 
transfer models compared to direct SoftMax in GZSL 
scenarios. And, CCPL shows greater stability than the other 
style transfer methods, including LiWCT and FastNoise [27], 
which have been effective by adding random noise to the 
feature space. Although the results obtained by directly using 
CCPL to transfer the model are not as good as the latest 
GCEA model [13], CCPL still outperforms it when combined 
with the proposed learning paradigm. Thus, the paradigm 
based on the improvements seen in CCPL is the most viable, 
with StyTr performing second best. 

D. Ablation Results 
We conducted a series of experiments to assess the impact 

of individual components within the CADA framework.  The 
components include dual-loss (‘dual’), which combines the 
original sample images or unseen content images with the 
processed images, background fusion (‘bf’), noise modeling 
(‘n’) and KL divergence loss (‘kld’). Table IV presents the 
mean 𝐻𝐻 results and performance gains for the four generative 
models, PhotoWCT, LiWCT, StyTr and CCPL. 

The results show that while LiWCT generally 
underperforms compared to PhotoWCT, it benefits 
significantly from the inclusion of dual-loss or KL divergence 
loss. This is attributed to the random noise addition in the un-
pooling layers, which helps the DCNN recognize subtle 
textures and augments the features of non-interesting 
background areas. Consequently, LiWCT integrated with 
CADA outperforms PhotoWCT. In contrast, PhotoWCT faces 
issues with biased content representation, causing learned 
domain knowledge to deviate from the target domain, 
especially after contrastive adaptation.  

When only the dual-loss component is applied, StyTr and 
CCPL, both of which excel in content retention, outperform 
PhotoWCT and LiWCT when integrated with CADA. 
Notably, StyTr with only the dual-loss component performs 
better than StyTr with additional background fusion and noise 
modeling. This suggests that the SSS texture is effectively 
embedded into the image background regions using StyTr, and 
additional components might lead to overcorrection. However, 

TABLE IV 
MEAN HARMONIC MEAN ACCURACY AND GAIN (%) OF ABLATION RESULTS FOR THE PROPOSED PARADIGM COMBINED WITH THE FOUR STYLE TRANSFER MODELS  

 PhotoWCT LiWCT StyTr CCPL 
- 45.92 45.48 48.61 49.11 

w/ dual 48.98 (3.06 ↑) 51.68 (6.20 ↑) 69.75 (21.14 ↑) 64.02 (14.91 ↑) 
w/ dual&bf 49.62 (3.70 ↑) 48.84 (3.36 ↑) 64.95 (16.34 ↑) 68.15 (19.04 ↑) 
w/ dual&n 57.95 (12.03 ↑) 57.45 (11.97 ↑) 66.95 (18.34 ↑) 71.34 (22.23 ↑) 

w/ dual&bf&n 57.78 (11.86 ↑) 58.66 (13.18 ↑) 67.62 (19.01 ↑) 71.61 (22.50 ↑) 
w/ dual&kld 50.53 (4.61 ↑) 50.88 (5.40 ↑) 69.91 (21.30 ↑) 66.15 (17.04 ↑) 

w/ dual&bf&n&kld 59.57 (13.65 ↑) 60.26 (14.78 ↑) 71.05 (22.44 ↑) 73.32 (24.21 ↑) 
 

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2025.3551028

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on March 14,2025 at 13:07:03 UTC from IEEE Xplore.  Restrictions apply. 



9 
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

the best results are achieved by incorporating both background 
fusion and noise modeling under contrastive adaptation 
constraints. This indicates that contrastive adaptation 
augmentation mitigates domain bias effectively, regardless of 
the quality of the synthesized SSS texture. 

For CCPL, CADA fully exploits its advantages in 
maintaining content coherence and achieving realistic texture 
blending in regions of interest. CADA successfully combines 
the strengths of each component, making CCPL the optimal 
generative model. 

E. Instance Visualization 
We presented instance visualizations of GZSL classification 

using the CCPL model enhanced with CADA, alongside 
comparisons to the SoftMax approach. 

Fig. 6 illustrates that the SoftMax model, when trained 
directly, struggles with predicting the person class and often 
misclassifies some targets as airplanes. In contrast, while the 
original CCPL model improves prediction confidence for the 

airplane class, it still fails to accurately recognize persons.  
When CCPL is combined with the proposed CADA, the 
performance improves significantly. The enhanced model 
achieves high prediction confidence for seafloor, airplane, and 
ship classes and demonstrates a marked improvement in 
identifying person targets. These results align with the 
superior performance metrics reported in Tables III and IV, 
validating the effectiveness of the designed GZSSS dataset. 

However, it is worth noting that some shipwrecks, which 
resemble frogmen, can be mistakenly identified as humans. 
This highlights the inherent challenges of the dataset, 
emphasizing the complexity of the GZSL study. 

F. Feature Visualization 
We visualized features extracted from the outputs of the 

DCNN models trained using various configurations: CCPL, 
CCPL with background fusion, noise modeling, and dual-loss 
(CCPL w/ bi&bf&n), CCPL with dual-loss and KL divergence 
(CCPL w/ bi&kld), and CCPL with CADA (CCPL+CADA). 

 
Fig. 7. t-SNE visualization results with comparison among the original CCLP, two ablation approaches and the proposed paradigm. Circle points  and big five-
pointed stars  represent sample features and content features, respectively. Grey ( ), orange ( ), blue (  ), and green (  ) denote the classes of seafloor, 
ship, airplane and person, respectively. 

 
Fig. 6. The top 5 instances of each classification confidence about SoftMax, CCPL and CCPL+CADA are displayed. The prediction names and confidence 
scores are shown below each picture. Correct results are marked in blue and incorrect ones are in red. 
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The features were extracted from both testing samples and 
content images and visualized using t-SNE [58], as shown in 
Fig. 7.  

The results demonstrate that the domain augmentation with 
background fusion and noise modeling significantly enhances 
the distinction between airplanes and shipwrecks compared to 
the original CCPL. Contrastive KL loss without the augmentation 
improves the discrimination between the two unseen classes 
and avoid overfitting. However, the joint distribution of the 
SSS samples and content for the person class are cut off by the 
distribution from other unseen classes in the t-SNE 
visualization map.  

Incorporating the CADA paradigm, with both domain 
augmentation and contrastive KL loss, further refines the 
discrimination among the three target classes. It effectively 
reduces the distribution deviation between content and SSS 
sample domains for the same class, enhancing the intra-class 
semantic differences and preventing mode collapse.  

The results underline the efficacy of contrastive adaptation 
in distinguishing subtle semantic differences and maintaining 
robust feature representation across diverse domains. 

G. Analysis on Each Semantic Content 
We investigated the influence of different semantic contents 

from the unseen classes on GZSL classification performance. 
The analysis is illustrated in Fig. 8.  

The classification performance for the person class varies 
depending on the source of the content. Specifically, when the 
person content is sourced from (a), the classification accuracy 
for the person class is superior compared to when the content 
is sourced from (b). It is due to content (a) capturing major 
contour characteristics of a person.  

Nevertheless, the person content (a) shares certain features 
with the airplane class, such as the similarity between human 
arms and airplane wings. This contour similarity causes 
confusion, where persons are often misclassified as airplanes. 
Extreme cases can be observed in comparisons such as (b)-(a) 
and (d)-(a), where persons are recognized successfully but 
many airplanes are misunderstood as persons. 
Indistinguishable content distribution patterns are noted in 
comparisons like (b)-(b), (d)-(a), (d)-(b) and (e)-(b) due to the 
intra-class bias.  

Interestingly, the airplane content (e), which is a shallow 

 
Fig. 8. The CADA results on the CCPL generative model in the case that only one semantic content is available for each unseen class. The content image 
instances, t-SNE visualization, classification confusion matrices, and harmonic mean 𝐻𝐻 are given. The legends in t-SNE visualization are the same in Fig. 7. In each 
confusion matrix, the true classes listed from top to bottom along the vertical axis are 'seabed', 'ship', 'airplane', and 'person'; the predicted classes listed from left 
to right along the horizontal axis are 'seabed', 'ship', 'airplane', and 'person'. The alphabetical numbers of these instances are the same in Fig. 5. 
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photograph, delivers better results than the other four sources 
from RS images. This is likely because the imaging principle 
of (e) is closer to that of SSS and is less affected by 
interference.   

Overall, only one semantic content achieves performance 
nearly as well as the default setup in our experiments. This 
suggests that discovering more suitable semantic photography 
views to mitigate domain bias is more valuable than merely 
increasing the number of semantic samples. Additionally, the 
semantic confusion between different classes remains a 
significant challenge. 

H. Parameter Analysis 
Three key hyper-parameters are involved, i.e., the logit 
adjustment ratio α in Eq. (12), the Rayleigh distribution scale 
𝑚𝑚𝐴𝐴𝑚𝑚  and the Gaussian distribution scale 𝑝𝑝𝑚𝑚𝐴𝐴  in SSS noise 
addition.  

We first examined α, which directly reflects the seen-unseen 
cognition. We explore 𝛼𝛼 values ranging from 50-400, and the 
effects are illustrated in Fig. 9. The results show that while the 
classification performance for both seen and unseen classes 
exhibits a paradoxical relationship, an approximate optimal 
point can be identified. The best performance is achieved with 
α values of 150, 350, 200 and 100 for the PhotoWCT, LiWCT, 
StyTr, and CCPL with the proposed CADA. Notably, 
CCPL+CADA performs relatively better within the 𝛼𝛼 range of 
100-350. When α is set to 100, the performance aligns with 
the condition where the training set size is approximately 100 
times the number of available semantic contents, fulfilling the 

mathematical requirement for class re-balancing. 
Next, we consider 𝑚𝑚𝐴𝐴𝑚𝑚 and 𝑝𝑝𝑚𝑚𝐴𝐴 , which influence noise 

addition. The harmonic mean 𝐻𝐻 results for CCPL+CADA with 
different scales of result of 𝑚𝑚𝐴𝐴𝑚𝑚 and 𝑝𝑝𝑚𝑚𝐴𝐴 are shown in Fig. 10. 
We explored 𝑚𝑚𝐴𝐴𝑚𝑚 varying from {0, 0.005,0.01, 0.015, 0.02} 
and 𝑝𝑝𝑚𝑚𝐴𝐴  from {0, 0.05,0.1, 0.15} . The results indicate that 
appropriate noise addition enhances the contrastive 
augmentation performance. However, excessive multiplicative 
noise detracts from the performance. The default noise settings 
provide relatively optimal results.  

VI. CONCLUSION 
To address the lack of unified evaluation standards, 

inconsistencies in training data size, and the absence of 
rigorous style sample selection in underwater SSS image 
classification, a novel GZSL paradigm was proposed, which 
integrated a mature style transfer framework with background 
fusion and simulated SSS noise to ensure fidelity and diversity 
of generated samples. By applying contrastive constraints 
between original and generated images, the method aligned 
heterogeneous semantic content and enhances ability to 
distinguish targets. 

Experimental results show that the proposed CADA 
achieves over a 20% improvement in the classification 
harmonic mean compared to both direct learning and existing 
generative-based methods. The incorporation of style transfer 
models with strong visual content preservation enhances 
GZSL performance, enabling accurate recognition of unseen 
classes under challenging conditions. 

The background fusion strategy is particularly effective in 
preserving critical information from regions of interest while 
improving sample diversity, addressing challenges posed by 
similar grayscale distributions among unseen classes. 
Introducing the noise ensures model generalization and robust 
recognition. Moreover, higher-quality semantic photography 
views derived from shallow views closely resembling real 
target shapes can substantially improve classification accuracy 
while avoiding overlaps with other categories.  

While contrastive adaptation reduces domain distribution 
gaps, intra-class bias in the unseen domain and misjudgment 
due to semantic likeness persist. Future work will focus on 
refining style transfer models to better capture semantic 
content, addressing residual biases, and advancing the 
detection of novel targets in SSS imagery. 

 
Fig. 9. Accuracy of classification under different 𝛼𝛼. 

 
Fig. 10. The 𝐻𝐻 heatmap of CCPL+CADA under different 𝑚𝑚𝐴𝐴𝑚𝑚 and 𝑝𝑝𝑚𝑚𝐴𝐴. 
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